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wl INDUSTRIAL AND CRITICAL ENVIRONMENTS

= Longer life cycle than other ICT
= Presence of legacy technology
= |ack of proper cybersecurity support
= |ntervention and updating issues
= Higher vulnerabilities presence

= [argerresponse times

= Lack of personnel with specific training in cybersecurity
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wl INDUSTRIAL AND CRITICAL ENVIRONMENTS

= Traditional techniques
= Passive Vulnerability Scanning
* |ntrusion Detection System

= Known attack signatures
= Anomaly detection (Machine Learning)
= (Clustering

= Autoregression

= Neural networks
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ANOMALY DETECTION PROCESS

PRE PROCESSING PHASE

D

Industrial network |ICS protocols dissection
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ANOMALY DETECTION PROCESS
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ANOMALY DETECTION PROCESS
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, oRUro WATER TREATMENT PLANT

= Production environment:

= Around 30 hosts in the network

= Near 1/2 Tb/day traffic
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[HONEY

= Water treatment plant honeypot

= 4 hosts in the network

= Near 1Gb/day traffic
= Realistic operation
= Experiments with real attacks

= More information on IHONEY

= https://s2grupo.es/en/ihoney_en/
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g, [HONEY

= Detection capability comparison
= Dataset of real attacks registered by the honeypot from 2016
= 8 traffic captures containing anomalies/attacks
= Traditional (IDS + PVS]) vs Machine Learning
= Machine Learning models
= 10 metrics x 9, 10 and 30 minute time slot aggregation

= [ STM neural networks + Regression models




& IHONEY

= Comparison results
= Traditional methods only detected some of the attacks
= ML-based techniques outperform traditional methods

= Method combination/co-relation detected all anomalies
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w, CONCLUSIONS AND NEXT STEPS

= Anomaly detection system
= Non-Invasive time slot metrics extraction from network traffic
= Different Machine Learning models training
= C(Classification/Prediction results co-relation

= ML-Based results outperform traditional approaches

= Next steps
= More metrics: Ml-Based, non-related to network traffic...

= More ML models: Autoecoders, Restricted Boltzmmann Machines




w, OTHER RESEARCH LINES: LM3

Learning the way analysts work while they do it

= Use Association Mining techniques to learn which actions cyber security analysts
do when dealing with an alert:

Alert parameters
Queries performed
Previous alerts reviewed

Similarity between current alert and previous ones




w, OTHER RESEARCH LINES: LM3

Association Mining

= Finding frequent patterns, associations, correlations or causal structures among
sets of items or objects

= Unsupervised learning: No need for a properly labeled training set
= Support: Probability of having A and B together
= Confidence: Probability of having B after having A

= Lift: Probability of B having a causal relation with A




w, OTHER RESEARCH LINES: LM3

= Facts [1]:

= Worldwide, 37% of organizations face more than 10,000 alerts/month

=  Within the US, 37% of organizations face more than 50,000 alerts/month:
more than 1,500 alerts/day, 70 alerts/hour

= Impossible to review every alert

= |Important alerts are lost, overlooked or responded too slowly

[1] 'The Numbers Game: How Many Alerts are too Many to Handle?" - FireEye and the International Data Corporation, 2015 ',
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LEVEL 1 ALERT RESOLUTION PROCEDURE

* Check alert data

» Search alert name in alert history

* Found similar alerts in the past

» Filter historical results by source IP

* Found same alert for same source |P address
in alert history: It was a false positive

« Change alert EBS to ‘False Positive’

* Copy and paste resolution from past alert

OTHER RESEARCH LINES: LM3

ALERT DATA

 Alert Name
e Src.IP

e Dst.IP

« EBS




w, OTHER RESEARCH LINES: LM3

LEVEL 1 ALERT RESOLUTION PROCEDURE

Check alert data

Approximately 80% of the queries run and analyses
performed manually during alert qualification and
validation are IDENTICAL




OTHER RESEARCH LINES: LM3

LEVEL 1 ALERT RESOLUTION PROCEDURE

Check alert data

Approximately 80% of the queries run and analyses
performed manually during alert qualification and
validation are IDENTICAL

LM3: Low Complexity Man-Machine Module




OTHER RESEARCH LINES: LM3

RECOVERING DATA FOR THE
LEARNING ALGORITHM

ALERT DATA
 Alert data Alert
Queries made N -
Historical alerts consulted SamlelzD
Historical alerts and current Drc. Is
alert similarity o
o _ « EBS
. ring analysis .




wl GRUPO

ASSOCIATION MINING
PROCESS

» Identification of
frequent elements

« Calculation of Support,
Confidence, Lift values,

etc
* Automatic alert
resolution of low
complexity alerts
* Resolution rule
generation for low
complexity alerts

RECOVERING DATA FOR THE
LEARNING ALGORITHM

 Alert data

* Queries made

* Historical alerts consulted

* Historical alerts and current
alert similarity

« String analysis

OTHER RESEARCH LINES:

ALERT DATA

Alert
Name
Src. IP
Dst. IP
EBS

LM3



OTHER RESEARCH LINES: LM3

TODAY’S ALERTS
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OTHER RESEARCH LINES: LM3

TODAY’S ALERTS
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w, OTHER RESEARCH LINES: LM3

TODAY’S ALERTS
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w, OTHER RESEARCH LINES: LM3

TODAY’S ALERTS

| |
| |
HE7 e G : @ @ @ | I'm still learning
these ones..! ' '
I from your work...
foloYo} v




w, OTHER RESEARCH LINES: LM3

Global impact in SOC

= [ ow complexity alert resolution procedures are learnt from
human analysts

= Low complexity alerts (approximately 40% of level 1 alerts]
are then automatically resolved

= |ncrease of total attended alerts with the same human
resources

= Reduction of response times in level 1

= Reduction of probability of human error due to alert fatigue




4 GRUPO

Anticipating a
cyber secure world

¢ ¢ ¢ ¢ ¢ ¢ ¢

MADRID BARCELONA VALENCIA BRUSSELS LISBON BOGOTA MEXICO D.F.
Velazquez 150, 22 planta, Llull, 321 (Edifici Cinc) Ramiro de Maeztu 7, Rue belliard 20, Rua Cidade Rabat 27, Carrera 11 N293A - 53, 44-7, México D.F.
28002 08019 46022 1040 1.dto, 1500-159. Of. 401 (051510]0]

T.(+34) 902 882 992 T.(+34) 902 882 992 T.(+34) 902 882 992 T.(+32) (0) 474532974 T.(+35) 1917620918 T.(+57 1) 74 574 39 T.(+52) 55 2128 068



